Modeling dendrite growth in undercooled concentrated multi-component alloys
详细信息    查看全文
文摘
Most theoretical work on dendrite growth has focused on dilute binary alloys, while most industrial alloys are concentrated multi-component systems. By incorporating the local non-equilibrium effects both at the interface and in the bulk liquid, the thermodynamic database and diffusional interaction, a model was developed for dendrite growth in undercooled concentrated multi-component alloys. An experimental study of dendrite growth in undercooled Ni-18 at. % Cu-18 at. % Co melts was carried out and the measured interface velocities (V) were well predicted by the present model over the whole undercooling range (¦¤= 30-313 K). During dendrite growth the partition coefficients change non-monotonically due to interaction between the species and changes in the dendrite tip radius. Interaction between the species also leads to a lower interface velocity and larger ¦¤T and V as the ¦¤T-V relation plateaus. The previous definition of constitutional undercooling, i.e. the sum of the contributions of each solute, is not applicable to concentrated multi-component alloys. The controlling mechanisms during dendrite growth are discussed with respect to the results of the calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700