Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application
详细信息    查看全文
文摘
Na-birnessite-type MnO2 (Na-OL-1) nanoplates and sodium manganese dioxide nanobelts with a 2 × 4 tunnel (Na-OMS-5) were synthesized by a hydrothermal method via one-pot oxidation reaction at 120 and 200 °C, respectively. The microstructure, morphology, and thermal stability of the MnO2 products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, simultaneous thermogravimetric-mass spectrometry, and N2 adsorption–desorption measurements. Their electrochemical performance was investigated in order to understand the sodium ions intercalation − deintercalation processes in the lamellar or tunnel structure of MnO2. Na-OL-1 nanoplates exhibited a specific capacitance of 308 F g−1 at a current density of 0.2 A g−1, which is much higher than that of Na-OMS-5 nanobelts (141 F g−1). Moreover, the Na-OL-1 nanoplates showed a good rate capability and electrochemical stability, suggesting that it is a promising electrode material for supercapacitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700