On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network
详细信息    查看全文
文摘
Bulk Al materials with average grain sizes of 0.47 and 2.4 µm, were fabricated by quasi-isostatic forging consolidation of two types of Al powders with average particle sizes of 1.3 and 8.9 渭m, respectively. By utilizing the native amorphous Al2O3 (am-Al2O3) film on the Al powders surfaces, a continuous, ∼7 nm thick, am-Al2O3 network was formed in situ in the Al specimens. Systematic investigation of the changes to the am-Al2O3 network embedded in the Al matrix upon heating and annealing up to 600 °C was performed by transmission electron microscopy (TEM). At the same time, the stability of the Al grain structure was studied by transmission Kikuchi diffraction (TKD), electron back-scatter diffraction (EBSD), and TEM. The am-Al2O3 network remained stable after annealing at 400 °C for 24 h. In-situ TEM studies revealed that at temperatures ≥450 °C, phase transformation of the am-Al2O3 network to crystalline 纬-Al2O3 particles occurred. After annealing at 600 °C for 24 h the transformation was completed, whereby only nanometric 纬-Al2O3 particles with an average size of 28 nm resided on the high angle grain boundaries of Al. Due to the pinning effect of 纬-Al2O3, the Al grain and subgrain structures remained unchanged during annealing up to 600 °C for 24 h. The effect of the am-Al2O3→纬-Al2O3 transformation on the mechanical properties of ultrafine- and fine-grained Al is discussed from the standpoint of the underlying mechanisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700