The phosphoproteome and its physiological dynamics in Staphylococcus aureus
详细信息    查看全文
文摘
Phosphorylation events on proteins during growth and stress/starvation can represent crucial regulation processes inside the bacterial cell. Therefore, serine, threonine and tyrosine phosphorylation patterns were analyzed by two powerful complementary proteomic methods for the human pathogen Staphylococcus aureus. Using 2D-gel analysis with a phosphosensitive stain (Pro-Q Diamond) and gel-free titanium dioxide based phosphopeptide enrichment, 103 putative phosphorylated proteins with successfully mapped 68 different phosphorylation sites were found in the soluble proteome of S. aureus. Additionally, in a proof of concept study, 8 proteins phosphorylated on arginine residues have been identified. Most important for functional analyses of S. aureus, proteins related to pathogenicity and virulence were found to be phosphorylated: the virulence regulator SarA, the potential antimicrobial target FbaA and the elastin-binding protein EbpS. Besides newly identified phosphorylation sites we compared our dataset with existing data from literature and subsequent experiments revealed additional phosphorylation events on highly conserved localizations in FbaA. Differential analysis of phosphorylation signals on the 2D-gels showed significant changes in phosphorylation under different physiological conditions for 10 proteins. Among these, we were able to detect newly appearing signals for phosphorylated isoforms of FdaB and HchA under nitrosative stress conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700