Design and analysis of slow light regime in silicon carbide 2D photonic crystal waveguides
详细信息    查看全文
文摘
We theoretically demonstrate the slow light capabilities of 2D silicon carbide based photonic crystal W1 waveguides (SiC-PhC-W1Ws) with numerical simulations. The PhC is assumed to be created by devising air-holes with hexagonal lattice in a standard SiC substrate having oscillator type ordinary refractive index. Numerical simulations show that by means of selective optofluidic infiltration and varying the air-holes radii, SiC-PhC-W1Ws are capable of slowing light down by about 473 times while their group velocity dispersions are tailored to near zero values. Our numerical study also suggests the possibility of slow-light guiding with ng 脳 螖/c values as high as 0.42 in SiC-PhC-W1Ws at optical telecommunications wavelengths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700