Microporous and mesoporous supports and their effect on the performance of supported metallocene catalysts
详细信息    查看全文
文摘
A series of hybrid-supported catalysts was prepared by sequentially grafting Cp2ZrCl2 and (nBuCp)2ZrCl2 (1:3 ratio) onto synthesized silica–zirconia xerogel, alumino-silicates, alumina, chrysotile and commercial MAO (methylaluminoxane)-modified silica. Supported catalysts were characterized by Rutherford backscattering spectrometry, atomic force microscopy, extended X-ray absorption fine structure spectroscopy, X-ray diffraction and nitrogen adsorption. The grafted metal content was between 0.21 and 1.00 wt. % Zr/SiO2 or Zr/Al2O3. All of the systems were shown to be active in ethylene polymerization with methylaluminoxane as the cocatalyst. The catalyst activity and polymer molecular weight depended on the effects of the textural characteristics of the supports on the structure of the generated supported catalyst species. The highest activity in ethylene polymerization (ca. 6560 kgPE molZr−1 h−1) was reached with the supported catalyst using commercial MAO-modified silica and also presented the lowest surface roughness. Correlation between EXAFS data and polymer characteristics was extracted: the production of polyethylenes with higher molecular weight was associated with the reduction in the interatomic Zr–O distance of the supported catalysts, which was shown to be dependent on the nature of the support.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700