Hierarchical biomineralization of calcium carbonate regulated by silk microspheres
详细信息    查看全文
文摘
As an analog of the main protein contained in nacre regenerated Bombyx mori silk fibroin has a significant influence on the morphology and polymorphic nature of CaCO3 in the biomineralization process. A number of studies have implied that the self-assembling aggregate structure of silk fibroin is a key factor in controlling CaCO3 aggregation. Further insight into this role is necessary with a particular need to prepare silk fibroin aggregates with homogeneous structures to serve as templates for the mineralization process. Here we have prepared homogeneous silk microspheres to serve as templates for CaCO3 mineralization in order to provide an experimental insight into silk-regulated crystallization processes. CaCO3 particles with different nano- and microstructures, and their polymorphs, were successfully formed by controlling the mineralization process. The key function of silk aggregation in controlling the morphology and polymorphic nature of CaCO3 particles was confirmed. A regulating effect of silk on the spatial features was also observed. A two-step process for silk fibroin-regulated biomineralization was found, with different levels of heterogeneous nucleation and aggregation. A full understanding of silk fibroin-regulated biomineralization mechanisms would help in understanding the function of organic polymers in natural biomineralization, and provide a way forward in the design and synthesis of new materials in which organic-inorganic interfaces are the keys to function, biological interfaces and many related material features.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700