Lateral self-assembly of 18.5-kDa myelin basic protein (MBP) charge component-C1 on membranes
详细信息    查看全文
文摘
Myelin basic protein (MBP), particularly the classic 18.5-kDa isoform, is a major structural protein of the myelin sheath of the central nervous system. It is an intrinsically disordered, peripheral membrane protein that shows structural polymorphism in combination with several overlapping interaction sites. Here, double electron-electron resonance (DEER) spectroscopy, in combination with a simplified, semi-quantitative analysis based on Monte Carlo simulations, is used to determine the distance distribution of murine 18.5-kDa MBP, unmodified charge component-C1, on large unilamellar vesicles of a lipid composition mimicking the cytoplasmic leaflet of myelin. Three singly spin-labeled MBP variants and a mixture of singly-labeled MBP variants are used. The MBPs, each bearing only one spin label, exhibit average intermolecular distances that are significantly shorter than the distances expected when assuming a random distribution at the employed lipid-to-protein ratios, indicating self-assembly on the membrane. The distribution of elliptical pervaded areas (hard ellipses) on a two-dimensional surface can serve as a model of the nonspecific self-assembly process. The corresponding pair correlation functions g(r) are determined from Monte Carlo simulations with variation of various parameters such as the ellipses' aspect ratios. Comparing the g(r) values with the DEER-derived distance distributions, the pervaded volume is best characterized by a nearly elliptical projection onto the membrane, with an aspect ratio of approximately 1.5, and with the longer semi-axis of approximately 1.4 nm. The approach of using local information from DEER with low-resolution models derived from Monte Carlo simulations can be applied to study the lateral self-assembly properties of other protein complexes on membranes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700