Resonance impedance sensing of human blood cells
详细信息    查看全文
文摘
A challenging problem in alternating current (AC) impedance sensing of particles (e.g., blood cells in plasma) with micro electrodes is that with the shrinking of electrode surface area the electrode double layer capacitance decreases. This double-layer capacitor dominates the system impedance in low frequency range, while the parallel stray capacitor dominates the system impedance in high frequency range. Hence the sensitivity for particle sensing for micro impedance sensors decreases over a wide frequency range. In this paper, we propose an approach to solve the problem. The idea is to use resonant sensing by connecting an external parallel inductor to the system. At the resonant frequency, the capacitive components in the system are nullified by the inductor, leaving the channel impedance (including the particle impedance) to be a major component in the system impedance. We then successfully demonstrate this idea by sensing 5 μm polystyrene beads. More important, this technique is extended to sensing blood cells in diluted human whole blood and leukocyte-rich plasma. The sensitivity can be improved by two orders of magnitude over more than three decades in frequency domain. The measured signal peak height histogram at low frequency matches well with known volume distribution of erythrocytes and leukocytes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700