Realization of a tilted reference wave for electron holography by means of a condenser biprism
详细信息    查看全文
文摘
As proposed recently, a tilted reference wave in off-axis electron holography is expected to be useful for aberration measurement and correction. Furthermore, in dark-field electron holography, it is considered to replace the reference wave, which is conventionally diffracted in an unstrained object area, by a well-defined object-independent reference wave. Here, we first realize a tilted reference wave by employing a biprism placed in the condenser system above three condenser lenses producing a relative tilt magnitude up to 20/nm at the object plane (300 kV). Paraxial ray-tracing predicts condenser settings for a parallel illumination at the object plane, where only one half of the round illumination disc is tilted relative to the optical axis without displacement. Holographic measurements verify the kink-like phase modulation of the incident beam and return the interference fringe contrast as a function of the relative tilt between both parts of the illumination. Contrast transfer theory including condenser aberrations and biprism instabilities was applied to explain the fringe contrast measurement. A first dark-field hologram with a tilted – object-free – reference wave was acquired and reconstructed. A new application for bright/dark-field imaging is presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700