Establishment and reliability evaluation of the design space for HPLC analysis of six alkaloids in Coptis chinensis (Huanglian) using Bayesian approach
详细信息    查看全文
文摘
Coptis chinensis (Huanglian) is a commonly used traditional Chinese medicine (TCM) herb and alkaloids are the most important chemical constituents in it. In the present study, an isocratic reverse phase high performance liquid chromatography (RP-HPLC) method allowing the separation of six alkaloids in Huanglian was for the first time developed under the quality by design (QbD) principles. First, five chromatographic parameters were identified to construct a Plackett-Burman experimental design. The critical resolution, analysis time, and peak width were responses modeled by multivariate linear regression. The results showed that the percentage of acetonitrile, concentration of sodium dodecyl sulfate, and concentration of potassium phosphate monobasic were statistically significant parameters (P < 0.05). Then, the Box-Behnken experimental design was applied to further evaluate the interactions between the three parameters on selected responses. Full quadratic models were built and used to establish the analytical design space. Moreover, the reliability of design space was estimated by the Bayesian posterior predictive distribution. The optimal separation was predicted at 40% acetonitrile, 1.7 g·mL−1 of sodium dodecyl sulfate and 0.03 mol·mL−1 of potassium phosphate monobasic. Finally, the accuracy profile methodology was used to validate the established HPLC method. The results demonstrated that the QbD concept could be efficiently used to develop a robust RP-HPLC analytical method for Huanglian.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700