A convex total generalized variation regularized model for multiplicative noise and blur removal
详细信息    查看全文
文摘
Multiplicative noise and blur corruptions usually happen in coherent imaging systems, such as the synthetic aperture radar. Total variation regularized multiplicative noise and blur removal models have been widely studied in the literature, which can preserve sharp edges of the recovered images. However, the images recovered from the total variation based models usually suffer from staircase effects. To overcome this deficiency, we propose a total generalized variation regularized convex optimization model. The resulting objective function involves the total generalized variation regularization term, the MAP based data fitting term and a quadratic penalty term which is based on the statistical property of the noise. Indeed, the MAP estimated data fitting term in the multiplicative noise and blur removal model is nonconvex. Under a mild condition, the quadratic penalty term makes the objective function convex. A primal-dual algorithm is developed to solve the minimization problem. Numerical experiments show that the proposed method outperforms some state-of-the-art methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700