Magnesium Sulfate Mitigates Lung Injury Induced by Bilateral Lower Limb Ischemia-Reperfusion in Rats
详细信息    查看全文
文摘

Background

Lower limb ischemia-reperfusion (I/R) elicits oxidative stress and causes inflammation in lung tissues that may lead to lung injury. Magnesium sulfate (MgSO4) possesses potent anti-oxidation and anti-inflammation capacity. We sought to elucidate whether MgSO4 could mitigate I/R-induced lung injury. As MgSO4 is an L-type calcium channel inhibitor, the role of the L-type calcium channels was elucidated.

Materials and Methods

Adult male rats were allocated to receive I/R, I/R plus MgSO4 (10, 50, or 100 mg/kg), or I/R plus MgSO4 (100 mg/kg) plus the L-type calcium channels activator BAY-K8644 (20 ¦Ìg/kg) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquets high around each thigh for 3 h followed by reperfusion for 3 h. After euthanization, degrees of lung injury, oxidative stress, and inflammation were determined.

Results

Arterial blood gas and histologic assays, including histopathology, leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity), and lung water content, confirmed that I/R caused significant lung injury. Significant increases in inflammatory molecules (chemokine, cytokine, and prostaglandin E2 concentrations) and lipid peroxidation (malondialdehyde concentration) confirmed that I/R caused significant inflammation and oxidative stress in rat lungs. MgSO4, at the dosages of 50 and 100 mg/kg but not 10 mg/kg, attenuated the oxidative stress, inflammation, and lung injury induced by I/R. Moreover, BAY-K8644 reversed the protective effects of MgSO4.

Conclusions

MgSO4 mitigates lung injury induced by bilateral lower limb I/R in rats. The mechanisms may involve inhibiting the L-type calcium channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700