Vibrio cholerae Toxin-Coregulated Pilus Structure Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry
详细信息    查看全文
文摘
The bacterial pathogen Vibrio cholerae uses toxin-coregulated pili (TCP) to colonize the human intestine, causing the severe diarrheal disease cholera. TCP are long, thin, flexible homopolymers of the TcpA subunit that self-associate to hold cells together in microcolonies and serve as the receptor for the cholera toxin phage. To better understand TCP's roles in pathogenesis, we characterized its structure using hydrogen/deuterium exchange mass spectrometry and computational modeling. We show that the pilin subunits are held together by tight packing of the N-terminal α helices, but loose packing of the C-terminal globular domains leaves substantial gaps on the filament surface. These gaps expose a glycine-rich, amphipathic segment of the N-terminal α-helix, contradicting the consensus view that this region is buried in the filament core. Our results explain extreme filament flexibility, suggest a molecular basis for pilus-pilus interactions, and reveal a previously unrecognized therapeutic target for V. cholerae and other enteric pathogens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700