Autophagy gene fingerprint in human ischemia and reperfusion
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferences

Objective

Autophagy is an evolutionary conserved adaptive response that is believed to promote cell survival in response to stressful stimuli via recycling of precursors derived from the degradation of endogenous cellular components. The autophagic molecular machinery is controlled by a large family of autophagy-related genes (ATGs) and downstream regulators. We sought to define the autophagy gene fingerprint associated with human ischemia and reperfusion (IR) injury using an intraoperative model developed by Sellke and colleagues.

Methods

Right atrial appendages, collected from human hearts before and after cardioplegic arrest and after reperfusion, were submitted for polymerase chain reaction (PCR) array, quantitative real-time PCR, and immunoblot analysis for autophagy proteins and their associated upstream regulators.

Results

Perioperative IR significantly upregulated 11 (13.1%) and downregulated 3 (3.6%) of 84 ATGs. Specifically, there were increases in the autophagy machinery components ATG4A, ATG4C, and ATG4D; tumor necrosis factor-related apoptosis-inducing ligand, MAPK8 and BCL2L1; and chaperone-mediated autophagy activity with increased heat shock protein (HSP) A8, HSP90AA1, and a-synuclein. Autophagy activity was confirmed through observations of higher LC3-I levels and an increase in the LC3-II/LC3-I ratio. Autophagy activation coincided with increased AMPK activation and decreased protein levels of the mammalian target of rapamycin, the latter a key negative regulator of autophagy.

Conclusions

We provide the first human cardiac fingerprint of autophagy gene expression in response to IR. These findings may inform on appropriate cell- and gene-based therapeutic approaches to limit aberrant cardiac injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700