Water in the slab: A trilogy
详细信息    查看全文
文摘
The geological and geophysical phenomena associated with water in the slab can be grouped into three different categories: those related to 1) the storage of water in the oceanic lithosphere at the surface, 2) the subduction of a hydrated slab and 3) its dehydration that ultimately leads to mantle regassing. Widespread hydration of the uppermost oceanic lithosphere occurs at mid-ocean ridges and more pervasively at the trench-rise system in response to bending-related fracturing and faulting. The amount of water stored in the upper lithosphere appears to be proportional to the spreading slowness and amount of bending. Hydrothermal alteration of the oceanic plate may also occur more locally along transform margins, fracture zones and volcanic ridges. Subduction of a hydrated slab should be observed from a reduction of seismic velocities, anomalous Vp/Vs ratios and seismic anisotropy in its uppermost portions, and shift of the main phase transformation boundaries characteristic of the mantle. Because of the increased buoyancy and weakness, hydrated or wet slabs should tend to stagnate over the 660 km discontinuity, favoring layered mantle convection patterns. Slab dehydration takes place according to the plate thermal regime function of the slab age and sinking velocity. Hydrous minerals in the oceanic crust and mantle are stable down to a maximum of 300 km and 1200 km depth, respectively, after which minor amounts of water can be retained in nominally anhydrous minerals. There is abundant geophysical evidence for dehydration of the slab crust and sub-Moho mantle, while fragmentary and often indirect evidence supports the presence of water in the lower plane of the Double Seismic Zone and at depths > 300 km.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700