Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 鈥榞reen鈥?synthesis of fine chemicals and pharmaceuticals
详细信息    查看全文
文摘
Five gram negative and two gram positive bacterial strains known for their heavy metal tolerance or ability to reduce metal ions were coated with Pd(0) nanoparticles (NPs) via reduction of soluble Pd(II) ions under H2 following an initial uptake of PdCl42- without added electron donor (鈥榖iosorption鈥?, where the gram negative strains had a ~5-fold greater capacity for Pd(II). Cupriavidis metallidurans accumulated Pd(II) exceptionally; the possibility of reduction to Pd(0) via an endogenous electron donor was not discounted. The initial rate of subsequent H2-mediated Pd(II) reduction correlated with the Pd(II) removed during biosorption (r2 = 0.9). TEM showed strain-specific variations of Pd-NPs. At a 1:3 loading of Pd:biomass the cell surfaces of Escherichia coli and Desulfovibrio desulfuricans showed uniform coverage with small NPs with the other strains showing larger aggregates. NPs made by the gram positive cells appeared larger than their gram negative counterparts. At a loading of 1:19 all were active catalysts in Cr(VI) reduction and in two Heck coupling reactions. BioPdE. coli and bioPdD. desulfuricans and bioPdA. oxydans were consistently the best and worst catalysts respectively. BioPdE. coli was further tested as a process catalyst according to industrial protocols in Heck and Suzuki coupling reactions. Laboratory and industrial tests (coupling of phenyl iodide and ethyl acrylate) gave 75% and 78% conversion to ethyl cinnamate, respectively. The biomaterial catalysed Heck and Suzuki reactions using bromoacetophenone and 4-bromoanisole (Heck) and 4-chloroanisole (Suzuki) but not 3-chlorotoluene. In accordance with known chemical catalysis the catalytic efficacy was related to electron-withdrawing substituents on the phenyl ring, with more than 90% conversion (Suzuki) using 4-bromobenzotrifluoride.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700