Flame propagation of mixtures of air with high molecular weight neat hydrocarbons and practical jet and diesel fuels
详细信息    查看全文
文摘
Laminar flame speeds of mixtures of air with n-C14H30, n-C16H34, a petroleum-derived JP-5 jet fuel, a camelina-derived hydrotreated renewable JP-5 jet fuel, a petroleum-derived F-76 diesel fuel, and an algae-derived hydrotreated renewable F-76 diesel fuel, were measured in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Digital particle image velocimetry was used to measure the axial flow velocities along the stagnation streamline. The experiments for n-C14H30/air and n-C16H34/air mixtures were modeled using recently developed kinetic models, and the experimental data were predicted satisfactorily. Both experiments and simulations revealed that the laminar flame speeds of n-C14H30/air and n-C16H34/air mixtures are very close to each other, as expected. On the other hand, the laminar flame speeds for the four practical fuels were found to be lower than n-C14H30 and n-C16H34, due to the presence of aromatics and branched hydrocarbons. Similarly, the laminar flame speeds for the alternative fuels were found to be higher than the petroleum-derived ones, again due to the presence of aromatic compounds in the latter. Further insight into the effects of kinetics and molecular transport was obtained through sensitivity analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700