Delving into the complex picture of Ti(IV)–citrate speciation in aqueous media: Synthetic, structural, and electrochemical considerations in mononuclear Ti(IV) complexes containing variably dep
详细信息    查看全文
文摘
The aqueous reaction of TiCl4 with citric acid at pH 4 (KOH), led to the surprising isolation of a species assembly K3[Ti(C6H6O7)2(C6H5O7)] · K4[Ti(C6H5O7)2(C6H6O7)] · 10H2O (1). The same system at pH 3 (neocuproine), led to the crystalline material (C14H13N2)2[Ti(C6H6O7)3] · 5H2O (2), while at pH 5.0 (NaOH), afforded Na3[Ti(C6H6O7)2(C6H5O7)] · 9H2O (3). Analytical, spectroscopic and structural characterization of 1, 2 and 3 revealed their distinct nature exemplified by mononuclear complexes bearing variably deprotonated citrates bound to Ti(IV). Solid-state 13C MAS NMR spectroscopy in concert with solution 13C and 1H NMR on 3 provided ample evidence for the existence of bound citrates of distinct coordination mode to the metal ion. Cyclic voltammetry defined the electrochemical signature of complex 2, thereby projecting the physicochemical profile of the species formulated by the aforementioned properties. Comparison of cyclic voltammetric data on available discrete Ti(IV)–citrate species depicts the electrochemical profile and an E1/2 value trend of the species in that binary system’s aqueous speciation, further substantiating the redox behavior of mononuclear Ti(IV)–citrate species in a pH-sensitive fashion. Collectively, the well-defined discrete species in 13 reflect and corroborate a synthetically challenging yet complex pH-specific picture of the aqueous Ti(IV) chemistry with the physiological citric acid, and shed light on the pH-dependent speciation in the binary Ti(IV)–citrate system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700