Photodissolution of lepidocrocite (γ-FeOOH) in the presence of desferrioxamine B and aerobactin
详细信息    查看全文
文摘
Batch adsorption and dissolution experiments with lepidocrocite (γ-FeOOH) and two siderophores, desferrioxamine B (DFOB) and aerobactin, were performed between pH 3 and 8 in the dark and under irradiation with UV–visible light. The increase in surface concentrations of adsorbed DFOB with increasing pH was explained in terms of electrostatic interactions between the protonated and charged terminal amine group of DFOB surface complexes and the charged lepidocrocite surface. The adsorption of aerobactin was consistent with the typical anion-like adsorption behavior of low molecular weight organic acids and indicated that the adsorption properties are strongly determined by the carboxylic acid groups. The adsorption experiments revealed furthermore that the Fe(III)–DFOB solution complex has a very low affinity for the surface, in contrast to Fe(III)–aerobactin solution complexes. In accordance with a surface-controlled mechanism of ligand-promoted dissolution, we found a linear correlation between dissolution rates of lepidocrocite and the surface concentrations of adsorbed DFOB. In the dark, 6- to 8-fold lower dissolution rate coefficients were determined for aerobactin in comparison to DFOB. These results suggested that aerobactin forms surface complexes that are less dissolution-active, characterized by a higher degree of multinuclear surface complexation and/or by less dissolution-active coordination modes of the involved iron-binding groups. For both DFOB and aerobactin, dissolution rate coefficients increased significantly under irradiation with UV–visible light. This increase was interpreted in terms of light-induced reduction of surface Fe(III), primarily by intrinsic photochemical processes of the lepidocrocite bulk phase, based on the observed photoreductive dissolution in the absence of organic ligands between pH 3 and 6. We hypothesize that the α-hydroxycarboxylate group of aerobactin may form a surface complex that additionally promotes photoreductive dissolution by a ligand-to-metal charge-transfer (LMCT) reaction, similar to citrate. However, LMCT reactions involving the α-hydroxycarboxylate group of aerobactin are rather ineffective, based on the comparison of light-induced dissolution rate coefficients determined in the presence of aerobactin and citrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700