Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels
详细信息    查看全文
文摘
The increasing interest in studying the properties of biocompatible hydrogels is due to their possible applications in bioengineering. Properties of hydrogels based on N-isopropylacrylamide (NIPAM) and the effect caused by copolymerization with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) or N-acryloyl-tris-(hydroxymethyl)aminomethane (HMA) were investigated. Hydrogels were synthesized by free radical polymerization at room temperature or by cryogelation at − 18 °C. The presence of different functional groups (isopropyl, − SO3, and –OH) and thermal conditions of polymerization affected the morphology and physicochemical and mechanical properties of hydrogels. Scanning electron microscopy (SEM) revealed the presence of macropores created by cryogelation with the morphology of the pores dependent on chemical composition of the copolymer. Poly(NIPAM-co-HMA) has spherical and isolated pores, whereas PNIPAM and Poly(NIPAM-co-AMPS) showed ellipsoidal interconnected pores. Three different water states were detected by differential scanning calorimetry (DSC), indicating the presence of nano- and macropores. Elastic modulus (E) was measured to be around 3–6.5 kPa by uniaxial compression. However, higher E values (20–30 kPa) and an anisotropic mechanical response were observed for PNIPAM and PNIPAM-co-AMPS hydrogels with ellipsoidal pores, a behavior that is almost similar to that of cartilage and bone tissues. Cytocompatibility studies using bovine fibroblasts (BFs) indicated good cell attachment and proliferation on PNIPAM-based hydrogel surfaces, although initially the cell adhesion varied depending on the composition of the surface. These hydrogels could be an interesting choice for the development of scaffolds in tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700