Real-time molecular recognition between protein and photosensitizer of photodynamic therapy by quartz crystal microbalance sensor
详细信息    查看全文
文摘
Real-time investigation of molecular recognition between protein and the photosensitizer of photodynamic therapy (PDT) was carried out by a quartz crystal microbalance (QCM) sensor integrated into a flow injection analysis (FIA) system. The photosensitizer meso-tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) was immobilized on the gold electrode of the QCM chip by combining the sol-gel and self-assembly methods. Such a rapid screen analysis of molecular recognition showed that the p-THPP-immobilized sensor exhibited sensitive and specific interaction only with hemoglobin (Hb). The kinetic rate constants (kass and kdiss) and the equilibrium association constant (KA) for p-THPP–Hb interaction were calculated by linear regression. The sensing performance characteristics of the proposed sensor were investigated. The sensor showed excellent selectivity, reproducibility, and repeatability for the detection of Hb. A linear calibration plot was obtained over a range from 0.2 to 1.0 μM with a detection limit (signal/noise ratio = 3) of 0.15 μM. The response mechanism of the sensor is discussed in detail. Due to its low cost and simple manipulation, this QCM–FIA system was shown to be a highly effective method for the investigation of interaction between biomacromolecules and the PDT photosensitizer. It also provides a potential strategy for screening an efficient and less harmful photosensitizer for PDT application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700