Higher Hickerson formula
详细信息    查看全文
文摘
In [11], Hickerson made an explicit formula for Dedekind sums 314X16301548&_mathId=si1.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a793f7facdb680f1d93c110e62574a92" title="Click to view the MathML source">s(p,q) in terms of the continued fraction of 314X16301548&_mathId=si2.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=c754417fa40160ef3561c82ad5e61478" title="Click to view the MathML source">p/q. We develop analogous formula for generalized Dedekind sums i3" class="mathmlsrc">314X16301548&_mathId=si3.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=50921a92e992d9bcb46d77112310dc01" title="Click to view the MathML source">si,j(p,q) defined in association with the 314X16301548&_mathId=si4.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=6d8bba80a3ff6f6fa5cbf0fd6f7131e9" title="Click to view the MathML source">xiyj-coefficient of the Todd power series of the lattice cone in 314X16301548&_mathId=si5.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a6e0cd47c5e9badb8a166515fc840d6b" title="Click to view the MathML source">R2 generated by 314X16301548&_mathId=si6.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=92f11dee46d081ca88d5b5d14cd7c151" title="Click to view the MathML source">(1,0) and 314X16301548&_mathId=si7.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=3481483978028da6fd62d31f9d298748" title="Click to view the MathML source">(p,q). The formula generalizes Hickerson's original one and reduces to Hickerson's for 314X16301548&_mathId=si8.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=956405bad31eb5d3a361ec5075979e01" title="Click to view the MathML source">i=j=1. In the formula, generalized Dedekind sums are divided into two parts: the integral 314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">View the MathML source314X16301548-si9.gif"> and the fractional 314X16301548&_mathId=si10.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=d90ac1223f8bb67d181b25c20727c386">View the MathML source314X16301548-si10.gif">. We apply the formula to Siegel's formula for partial zeta values at a negative integer and obtain a new expression which involves only 314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">View the MathML source314X16301548-si9.gif"> the integral part of generalized Dedekind sums. This formula directly generalizes Meyer's formula for the special value at 0. Using our formula, we present the table of the partial zeta value at 314X16301548&_mathId=si11.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=689ff79aa1b80b4bb5d1d0ad78b952b6" title="Click to view the MathML source">s=−1 and −2 in more explicit form. Finally, we present another application on the equidistribution property of the fractional parts of the graph 314X16301548&_mathId=si12.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=02df000922d3a943c32a4fa5535f840f">View the MathML source314X16301548-si12.gif"> for a certain integer 314X16301548&_mathId=si13.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=285c25c2919bc817ce00b24b2077146a" title="Click to view the MathML source">Ri+j depending on 314X16301548&_mathId=si14.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=feebb1991c9eb9545515f1bc4b33537f" title="Click to view the MathML source">i+j.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700