Study of surface exfoliation on 6H-SiC induced by H2+ implantation
详细信息    查看全文
文摘
The effect of lattice damage generated by the H2+-implantation on exfoliation efficiency in 6H-SiC wafers is investigated. <0001> 6H-SiC wafers were implanted with 134 keV H2+ ions to ion fluences from 1.5×1016 to 5×1016 H2+ cm−2 and subsequently annealed at temperatures from 973 K to 1373 K. The samples were studied by a combination of optical microscopy and transmission electron microscopy. Only after 1373 K annealing for 15 min, blisters and exfoliation occur on the H2+-implanted sample surface. With increasing the implantation fluences from 1.5×1016 to 3.75×1016 H2+ cm−2, the exfoliation mean size decreases, while the exfoliation density increases. For the highest fluence of 5×1016 H2+ cm−2, seldom exfoliations occur on the sample surface. Microstructure analysis shows that exfoliation efficiency is largely controlled by the H2+-implantation-induced lattice damage. The depth of the microcrack is related to the implantation fluence. The effect of implantation fluence on dislocation loops, platelet nucleation and growth is investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700