Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration
详细信息    查看全文
文摘
The mechanical properties of high volume fraction SiC-particle reinforced Al-based metal matrix composites (MMCs) produced by means of pressurized liquid metal infiltration (squeeze casting) are shown to be triggered by matrix alloying and heat treatment procedures. It is distinguished between the effect of those alloying elements that only act on matrix strengthening, leaving the interface unaffected, and those alloying elements that interact with both (i.e. Mg). Among the first category a further sub-division is made between pure solid solution and precipitation hardening elements (i.e. Zn and Cu, ZnMg, respectively). In particular, this study addresses the effect of alloying and age hardening for AlCu3 and AlZn6Mg1 as well as the specific role of Mg additions to Al/SiC MMCs on interface microstructure formation, mechanical properties and fracture mode. For instance, it is shown that single additions of Mg catalyse the formation of Al4C3 whereas additions of Cu as well as (Zn + Mg) provide opportunities to enhance the composites’ strength.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700