Double probe approach to protein adsorption on porous carbon surfaces
详细信息    查看全文
文摘
Comparison of nitrogen adsorption isotherms of porous carbons before and after exposure to proteins yields information on the pore landscape that is unobtainable from small angle neutron scattering (SANS) [Carbon 2016; 106:142–151]. Two globular proteins, bovine serum albumin (BSA), and bovine pancreatic trypsin inhibitor (BPTI), are studied, with two different porous carbon substrates: a hydrophobic open structured carbon aerogel with basic surface pH (C1), and a hydrophilic medical grade microporous carbon with neutral surface pH (C2).BSA and BPTI both interact more strongly with the hydrophilic carbon than with C1, but C2 adsorbs notably less protein. Both proteins are arrested at the micropore entrances. With increasing concentration in C1, these protein barriers, on drying, seal the micropores hermetically to nitrogen gas. Owing to the adsorbed protein, macropores that are otherwise too wide to be detected in virgin C1 shrink and become detectable by gas adsorption. In C2 the dry protein barriers are looser and remain permeable to nitrogen molecules, leaving the measured micropore and mesopore surface areas practically unaffected. This double probe approach corroborates and extends the earlier SANS findings, highlighting the role played by pore structure and the hydrophilic/hydrophobic character of the substrate in protein adsorption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700