Nanoscopic observations for evaluating the failure process of aligned multi-walled carbon nanotube/epoxy composites
详细信息    查看全文
文摘
This study examined the nanoscopic damage progression of aligned multi-walled carbon nanotubes (CNT)/epoxy composites under tensile loading using transmission electron microscopy (TEM). Aligned CNT/epoxy composite films (30 ¦Ìm thickness) were processed using a forest-drawn aligned CNT sheet and hot-melt prepreg method. Four film specimens, respectively subjected to tensile stress of 0 MPa, 45 MPa, 95 MPa and 110 MPa, were prepared. After tensile loading, each specimen was machined until the thickness became about 100 nm using a focused ion beam milling machine (FIB) for TEM observations. Damage of three kinds, i.e. CNT break derived from the disordered CNT structures around metallic catalyst, sword-in-sheath type CNT break, and several patterns of interfacial debonding, was observed clearly. The broken CNTs and interfacial debonding per unit area were counted from TEM photographs. Results show that broken CNTs and interface debonding increased considerably at 95-110 MPa, which suggests multiple fracture of CNT under tensile loading. The CNT length at the failure stress (110 MPa) was approximately 45 ¦Ìm. Estimated values from the strength of CNTs resemble those from macroscopic stress-strain behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700