Modulational instability in the Whitham equation with surface tension and vorticity
详细信息    查看全文
文摘
We study modulational stability and instability in the Whitham equation, combining the dispersion relation of water waves and a nonlinearity of the shallow water equations, and modified to permit the effects of surface tension and constant vorticity. When the surface tension coefficient is large, we show that a periodic traveling wave of sufficiently small amplitude is unstable to long wavelength perturbations if the wave number is greater than a critical value, and stable otherwise, similarly to the BenjaminFeir instability of gravity waves. In the case of weak surface tension, we find intervals of stable and unstable wave numbers, whose boundaries are associated with the extremum of the group velocity, the resonance between the first and second harmonics, the resonance between long and short waves, and a resonance between dispersion and the nonlinearity. For each constant vorticity, we show that a periodic traveling wave of sufficiently small amplitude is unstable if the wave number is greater than a critical value, and stable otherwise. Moreover it can be made stable for a sufficiently large vorticity. The results agree with those based upon numerical computations or formal multiple-scale expansions to the physical problem.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700