The method of steepest descent for estimating quadrature errors
详细信息    查看全文
文摘
This work presents an application of the method of steepest descent to estimate quadrature errors. The method is used to provide a unified approach to estimating the truncation errors which occur when Gauss–Legendre quadrature is used to evaluate the nearly singular integrals that arise as part of the two dimensional boundary element method. The integrals considered here are of the form View the MathML source, where h(x) is a “well-behaved” function, α>0 and −1<a<1. Since 0<b≪1, the integral is “nearly singular”, with a sharply peaked integrand.

The method of steepest descent is used to estimate the (generally large) truncation errors that occur when Gauss–Legendre quadrature is used to evaluate these integrals, as well as to estimate the (much lower) errors that occur when Gauss–Legendre quadrature is performed on such integrals after a “sinh” transformation has been applied. The new error estimates are highly accurate in the case of the transformed integral and are shown to be comparable to those found in previous work by Elliott and Johnston (2007). One advantage of the new estimates is that they are given by just one formula each for the un-transformed and the transformed integrals, rather than the much larger set of formulae in the previous work. Another advantage is that the new method applies over a much larger range of α values than the previous method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700