Two turbulent flow regimes at the inlet of a rotating pipe
详细信息    查看全文
文摘
When a fluid enters a rotating circular pipe a swirl boundary layer with thickness of δ̃S appears at the wall and interacts with the axial momentum boundary layer with thickness of δ̃. We investigate the turbulent flow applying Laser-Doppler-Anemometry to measure the circumferential velocity profile at the inlet of a rotating pipe. The measured swirl boundary layer thickness follows a power law taking Reynolds number and flow number into account. A critical combination of Reynolds number, flow number and axial position causes a transition of the swirl boundary layer development in the turbulent regime. At this critical combination, the swirl boundary layer thickness as well as the turbulence intensity increase and the latter yields a self-similarity. The circumferential velocity profile changes to a new presented self-similarity. A method is established to define the transition inlet length, when the transition appears and a stability map for two regimes is given.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700