Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides
详细信息    查看全文
文摘
Non-covalent functionalized single-walled carbon nanotubes (SWCNTs) with improved solubility and biocompatibility can successfully transfer drugs, DNA, RNA, and proteins into the target cells. Theoretical studies such as molecular docking and molecular dynamics simulations in fully atomistic scale were used to investigate the hydrophobic and aromatic π–π-stacking interaction of designing four novel surfactant peptides for non-covalent functionalization of SWCNTs. The results indicated that the designed peptides have binding affinity towards SWCNT with constant interactions during MD simulation times, and it can even be improved by increasing the number of tryptophan residues. The aromatic content of the peptides plays a significant role in their adsorption in SWCNT wall. The data suggest that π–π stacking interaction between the aromatic rings of tryptophan and π electrons of SWCNTs is more important than hydrophobic effects for dispersing carbon nanotubes; nevertheless SWCNTs are strongly hydrophobic in front of smooth surfaces. The usage of aromatic content of peptides for forming SWCNT/peptide complex was proved successfully, providing new insight into peptide design strategies for future nano-biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700