Adaptive neural network decentralized stabilization for nonlinear large scale interconnected systems with expanding construction
详细信息    查看全文
文摘
A backstepping-based adaptive neural network decentralized stabilization approach is presented for the expanding construction of a class of nonlinear large scale interconnected systems in this paper. The expanding construction of large scale interconnected systems is to add some new subsystems into the original system during the operation of the original system. For stabilization of the expanding system, it is more realistic to keep the decentralized control laws of the original subsystems unchanged. And the decentralized control laws of the new subsystems must be designed to stabilize both itself and the resultant large scale system. In this paper, neural networks are used to approximate the unknown nonlinear functions in the new subsystems and the unknown nonlinear interconnection functions. The decentralized control laws and the parameter adaptive laws of the new subsystems are designed by using backstepping technique for the expanding construction of the large-scale interconnected system. Based on Lyapunov stability theory, the uniform and ultimate boundedness of all signals in the closed-loop system is proved. Two illustrative examples show the feasibility of the presented approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700