Repetitive impact exposure and characterization of stress-whitening of an American football helmet outer shell material
详细信息    查看全文
文摘
Mechanical stress exerted upon impact-modified polycarbonate (PC) and poly(ethylene terephthalate) (PET) blends has been reported to generate microscopic voids via rubber-toughener (RT) particle cavitation which can macroscopically manifest to visibly whiten the material. Previous work has revealed a whitening phenomenon in collegiate American football helmet outer shells after a single season and in helmet-grade plaques following linear impact testing. The purpose of this research was to quantify the effects of repetitive linear drop exposures on the (i) impact performance; (ii) physical and thermal properties; and (iii) surface and tensile mechanical properties of a stress-whitened American football helmet outer shell material. Statistically significant changes in plaque impact performance corresponded to substantial stress-whitening that penetrated up to 40–45% into the plaque thickness and elicited shifts in surface and tensile mechanical properties. Nanoscale microscopy revealed elongation of the PC/PET matrix and delamination at the RT-matrix interface. Thermal property analysis suggested the concomitant occurrence of RT cavitation and strain-induced PET crystallization. Overall, the research identified a battery of diagnostic tools to characterize material property changes of stress-whitening in rubber-toughened helmet outer shell materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700