Nanotechnology Approaches to Targeting Inflammation and Excitotoxicity in a Canine Model of Hypothermic Circulatory Arrest-Induced Brain Injury
详细信息    查看全文
文摘
Neurocognitive dysfunction and injury remain problematic after cardiac procedures requiring hypothermic circulatory arrest (HCA). Due to poor blood-brain barrier penetrance and toxicities associated with systemic drug therapies, clinical success has been elusive. Accordingly, we explored targeted dendrimer (a nanoparticle) drug therapies in our well-established canine model of HCA to characterize the biodistribution and cellular localization of these nanoparticles in areas of known neuronal apoptosis and necrosis.

Methods

Class A, 27- to 30-kg male hounds were administered an initial intravenous bolus (10% of the total dose [200 mg]) of generation-six polyamidoamine dendrimer (6.7 nm) labeled with cyanine 5, and cardiopulmonary bypass with peripheral cannulation was initiated. After 90 minutes of HCA, 70% of the total dose was infused over a 6-hour period. The final 20% of the total dose was given 24 hours post-HCA. The brain was harvested 48 hours later (72 hours post-HCA) and analyzed for dendrimer 6-cyanine 5 biodistribution.

Results

The dorsal hippocampus demonstrated the highest brain accumulation of dendrimer 6-cyanine 5, which closely corresponds to the distribution of apoptotic neurons evident with histologic staining and on confocal imaging. In injured brain regions, dendrimer traversed the blood-brain barrier and localized within the target cells (injured neurons and microglia).

Conclusions

These findings have exciting implications for the future development of novel therapeutics to mitigate neurocognitive deficits in this group of patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700