Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle
详细信息    查看全文
文摘
Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ( 1–2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type (“enriched mantle”) OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high 87Sr/86Sr ratios, low 143Nd/144Nd and 206Pb/204Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81–99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert–Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197–212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981–1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with < 1 wt. % H2O, and a marine “mud” with 8 wt. % H2O) at 16–23 GPa. In both materials, the high-pressure mineral assemblages contain 15–30 wt. % K-hollandite (KAlSi3O8), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe–Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-I type ocean–island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas' sources. Our results suggest that the incompatible trace-element signature of EM-I OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700