Influence of environment on walleye pollock eggs, larvae, and juveniles in the southeastern Bering Sea
详细信息    查看全文
文摘
We examined the influence of environmental conditions on walleye pollock (m>Theragra chalcogrammam>) early life history in discrete stages at two ecological scales using a 17-year time series from the southeastern Bering Sea. Generalized additive models (GAMs) were used to quantify relationships between walleye pollock stages (eggs, yolksac larvae, preflexion larvae, late larvae, and juveniles), the fine-resolution environment (temperature, wind speed, salinity, and copepod concentration), and the broad-resolution environment (annual spawning stock biomass, temperature, zooplankton biomass, and wind mixing). Early stages (eggs, yolksac larvae, and preflexion larvae) were associated with high spawning stock biomass, while late stages (late larvae and juveniles) were not associated with spawning stock biomass. The influence of temperature increased with ontogeny: high egg abundance was associated with temperatures from ? to 7 ¡ãC and negative annual temperature anomalies and high juvenile abundance was associated with temperatures from 4 to 12 ¡ãC and positive temperature anomalies. Winds enhanced the transport of early stages from spawning locations to shallower sampling depths, but did not affect feeding stages (preflexion larvae, late larvae, and juveniles) in a manner consistent with the encounter-turbulence hypothesis. Feeding stages were positively associated with localized copepod concentrations but not zooplankton biomass anomaly, suggesting that the localized measurements of potential prey is a better indicator compared to broad-scale conditions measured in areas where these stages do not necessarily occur. Broad-resolution covariates, however, explained a greater portion of the overall variation than did fine-resolution models. Of the environmental conditions examined, temperature explained more variation in abundance of walleye pollock early life stages than any other covariate. Temperature is likely a major driving force structuring variability in populations of walleye pollock in their first year of life, acting directly upon them and indirectly upon their physical habitat and prey community.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700