Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion
详细信息    查看全文
文摘
The geochemistry of detrital chromian spinels is commonly used to discriminate provenance from different tectonic settings of mafic and ultramafic igneous rocks. Detrital spinels in Cenozoic foreland-basin successions fed from the Himalaya Orogen were assertively interpreted as sourced from the ophiolitic rocks of the Indus-Yarlung suture zone. This study compares the geochemistry of detrital Cr-spinels from the Tethys Himalaya passive margin and Cretaceous Xigaze forearc successions with those from the Indus-Yarlung ophiolites. Cr-spinels in the Indus-Yarlung ophiolites have low TiO2 (mostly < 0.2%) and high Al2O3 (10-48%). Detrital Cr-spinels from the Tethyan Himalaya have instead high TiO2 (mostly > 0.2%) and low Al2O3 (mainly 6-23%), indicating a rift-related basaltic origin. Detrital Cr-spinels from the Xigaze forearc basin have either low TiO2 (mostly < 0.2%) and low Al2O3 (4-34%), suggesting provenance from a supra-subduction-zone peridotite, or high TiO2 (> 1.0%), indicating intra-plate basaltic origin. Compositional fingerprints of detrital Cr-spinels from Lower Eocene foreland-basin strata in the central-eastern Himalaya indicate provenance from the Lhasa Block without input from the Indus-Yarlung ophiolites. Only Cr-spinels from the Lower Eocene foreland-basin strata in the north-western Himalaya and the Upper Eocene-Lower Miocene remnant-ocean turbidites of the Bengal basin are mostly ophiolite-derived. The Indus-Yarlung ophiolites were thus emplaced and exposed to erosion since the Early Eocene (> 50 Ma) in the NW Himalaya, but only subsequently (50-38 Ma) in the eastern Himalaya.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700