Intermittent local periodontal inflammation causes endothelial dysfunction of the systemic artery via increased levels of hydrogen peroxide concomitantly with overexpression of superoxide dismutase
详细信息    查看全文
文摘
The present study was designed to examine whether the intermittent local periodontal inflammation induces endothelial dysfunction of the systemic artery caused by oxidative stress and if increased levels of hydrogen peroxide coexisted with overexpression of superoxide dismutase (SOD) as well as NADPH oxidase contribute to the oxidative stress.

Methods

The rats in lipopolysaccharides (LPS) group received 1500 μg LPS injection to bilateral gingiva of the lower jaw a week interval from eight- to eleven-week-old. Isolated mandibles or aortas were subjected to the evaluation of histopathological changes, isometric force recordings, reactive oxygen species using 2′,7′-dichlorofluorescin diacetate (10− 5 mol/L) and protein expression of NADPH oxidase subunits and SOD, respectively.

Results

Mandible sections demonstrated the periodontal inflammation only in the LPS group at three days, but not seven days, after the LSP injection. Acetylcholine (10− 9 to 10− 5 mol/L)-induced relaxation was reduced only in aortas from the LPS group. Gp91ds-tat and PEG-catalase restored the impaired dilation in arteries from the LPS group. Levels of reactive oxygen species were enhanced in aortas from the LPS group, whereas the increment was abolished by the treatment with gp91-ds-tat or PEG-catalase. Expression of a NADPH oxidase subunit p47phox and CuZn-SOD increased in the LPS group.

Conclusions

The intermittent local periodontal inflammation induces systemic endothelial dysfunction caused by overproduction of reactive oxygen species in the systemic artery of rats and that overexpression of CuZn-SOD as well as a NADPH oxidase cytosolic subunit contributes to increased levels of hydrogen peroxide in blood vessels of this animal model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700