Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers
详细信息    查看全文
文摘
The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5 % ) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5 % MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of CC and a decrease of CO bond in the plasma treated groups, and the largest raise of CC bond for the 2.5 % MR group. The water contact angles of the 2.5 and 6.1 % MR groups increase, whereas no significant change is showed in the 23.5 % MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25 % when moisture regains are 2.5 and 6.1 % , while presented no apparent improvement at high moisture regain of 23.5 % . Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700