Investigation of microstructures and residual stresses in laser peened Incoloy 800H weldments
详细信息    查看全文
文摘
Laser Shock Peening (LSP) is an advanced surface enhancement technique to improve the mechanical properties of engineering materials. In the present study, LSP was performed on Incoloy 800H laser weldments. The microstructure and residual stress, two key factors for application of weldments, were investigated via optical and transmission electron microscopy and crystallographic and residual stress X-ray diffraction analysis. Micro-hardness tests were also used to evaluate mechanical properties. Results show that significant grain refinement occurs in the LSP-treated zone where original lath structures are refined to equiaxed grains, and dislocation density increases significantly. Because of the high strain rates produced by LSP, grain deformation by slip is limited, and therefore deformation by grain twinning occurs. The micro-hardness of weld joint increased after LSP with a hardened depth of about 1.2 mm. LSP processed welded joints exhibited high compressive residual stress, and the residual stress distribution was uniform. It is shown that LSP is an effective way to refine microstructure, increase strength and rebalance residual stress which will improve fatigue life and corrosion cracking resistance of Incoloy 800H weldments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700