Silicon germanium active layer with graded band gap and µc-Si:H buffer layer for high efficiency thin film solar cells
详细信息    查看全文
文摘
We investigated solar cells with graded band gap hydrogenated amorphous silicon germanium active layer and hydrogenated microcrystalline silicon buffer layer at the interface of intrinsic and n-type doped layer. A significantly improved, 10.4% device efficiency was observed in this type of single junction solar cell. The intrinsic type microcrystalline silicon buffer layer is thought to play dual roles in the device; as a crystalline seed-layer for growth of n-type hydrogenated microcrystalline silicon layer and helping efficient electron collection across the i/n interface. Based on these, an enhancement in cell parameters such as the open-circuit voltage (Voc), and fill factor (FF) was observed, where the FF and Voc reaches up to 69% and 0.85 V respectively. Our investigation shows a simple way to improve device performance with narrow-gap silicon germanium active layer in solar cells in comparison to the conventionally constant band gap device structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700