Bacteriophage SP6 RNA polymerase mutants with altered termination efficiency and elongation processivity
详细信息    查看全文
文摘
An Escherichia coli strain containing two plasmids was developed for in vivo isolation of the phage SP6 RNA polymerase mutants. It was developed to isolate mutants with increased proficiency of termination at the SP6 terminator and/or with reduced elongation processivity. Mutations were randomly introduced into an N-terminal third of the polymerase gene that was placed under a lac promoter in one plasmid. In the other plasmid, a promoter-lacking lacZ gene modified for reduced translation efficiency was placed downstream of a tandem pair of the SP6 terminator located downstream of an SP6 promoter-chloramphenicol acetyltransferase gene. Termination-up mutants were selected in vivo as they rendered LacZ activity level lower than the wild-type, without reducing chloramphenicol resistance substantially. Three such mutants (M15L, M15S, and D117G) were purified, and their termination efficiencies were measured in vitro at two different intrinsic termination signals in the E. coli rrnB terminator t1 that are different in requiring RNA hairpin formation. All three mutations enhanced termination efficiencies in vitro at the SP6 terminator and the upstream signal of rrnB t1, but reduced the efficiency at the downstream signal of it. All the mutations reduced elongation processivity, as the mutants produced much less amounts of large transcripts (2.1 kb) than the wild-type but the similar amounts of small transcripts (up to 670 nt). Thus, the mutations, all reducing elongation processivity of the polymerase, exhibited opposite effects on the two types of intrinsic termination signals, suggesting that the two mechanisms involve different interactions with the phage RNA polymerase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700