What stops the ‘diploid male vortex’?—A simulation study for species with single locus complementary sex determination
详细信息    查看全文
文摘
The survival of hymenopteran populations especially that of ecologically and economically important pollinators and parasitoids, has become a major topic for empirical and theoretical studies. Complementary sex determination (CSD) in Hymenoptera may impose a substantial genetic load through the production of inviable or sterile diploid males. Modelling and laboratory studies have indicated that this genetic load may trigger a ‘diploid male vortex’ leading to rapid extinction of populations.

Here we take a broader theoretical approach to analyze why populations exhibiting CSD persist in nature, even if they contain large proportions of homozygous diploid individuals. Using an individual-based model of spatially structured hymenopteran populations, we show that (i) inviability or reduced fertility of homozygous individuals, (ii) female-biased sex ratio, and (iii) strong intra-specific competition can mitigate the negative influence of CSD on population persistence and that (iv) already extremely low dispersal rates will result in long term survival. These findings underline the importance of life history traits for population survival and demonstrate that rather specific conditions must be met to initiate the ‘diploid male vortex’.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700