A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice
详细信息    查看全文
文摘
In response to the growing problem of multidrug-resistant pathogenic microbes, much attention is being paid to naturally occurring and synthetic antimicrobial peptides (AMPs) and the effects of their structural modification. Among these modifications, amino acid substitution is a simple approach to enhancing biological activity and reducing cytotoxicity. An earlier study indicated that HPA3, an analog of HP (2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1, forms large pores and shows considerable cytotoxicity. However, HPA3P, in which a proline (Pro) is substituted for glutamic acid (Glu) at position 9 of HPA3, shows markedly less cytotoxicity. This may be attributable to the presence of a Pro-kink into middle of the HPA3P structure within the membrane environment. Unfortunately, HPA3P is not an effective antibacterial agent in聽vivo. We therefore designed a helix-PXXP-helix structure (HPA3P2), in which Pro was substituted for the Glu and phenylalanine (Phe) at positions 9 and 12 of HPA3, yielding a molecule with a flexible central hinge. As compared to HPA3P, HPA3P3 exhibited dramatically increased antibacterial activity in聽vivo. ICR mice infected with clinically isolated multidrug-resistant Pseudomonas aeruginosa showed 100% survival when administered one 0.5-mg/kg dose of HPA3P2 or three 0.1-mg/kg doses of HPA3P2. Moreover, in a mouse model of septic shock induced by P.聽aeruginosa LPS, HPA3P2 reduced production of pro-inflammatory mediators and correspondingly reduced lung (alveolar) and liver tissue damage. The changes in HPA3 behavior with the introduction of Pro likely reflects alterations of the mechanism of action: i) HPA3 forms pores in the bacterial cell membranes, ii) HPA3P permeates the cell membranes and binds to intracellular RNA and DNA, and iii) HPA3P2 acts on the outer cellular membrane component LPS. Collectively, these results suggest HPA3P2 has the potential to be an effective antibiotic for use against multidrug-resistant bacterial strains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700