Sound absorption structure in helical shapes made using fibrous paper
详细信息    查看全文
文摘
This paper presents sound absorbing structure constructed using multiple layers of fibrous papers. Sound absorbing materials converts sound wave into thermal energy due to the porosity. The proposed sound absorbing structure has helical-like shapes in layered format with cyclic winding of the mulberry papers and coconut fibers. The acoustic properties changes depending on the thickness of the air cavity between the thin layers and porosity of the layers themselves. Sound absorption coefficients were measured using two-microphone impedance tube in order to investigate the acoustic property variations with porosity. The measured results were compared to predictions utilizing wave propagations through a slit for verification of the sound absorbing mechanism. A simple method for improving the sound absorption with less material by composite structure is proposed and verified through the experiment. Dynamic stiffness and loss factor of the helical-shaped sound absorbers were measured and compared by analyzing supporting properties to the vibrating beam. Depending on the construction method, the frame dynamic properties showed variation even when the sound absorption was identical. This information is required for optimal design of absorbing layers for specific noise control applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700