Comparative studies on energy-dependence of reduced effective mass in quantum confined ZnS semiconductor nanocrystals prepared in polymer matrix
详细信息    查看全文
文摘
Cubic ZnS nanocrystals have been successfully prepared by the wet chemical route at different temperature in polyvinyl alcohol (PVA) matrix. Starting reagents were zinc acetate as a zinc ion source and sodium sulfide as a sulfur ion source. A variety of techniques (Scanning electron microscopy, UV¨Cvis spectroscopy and X-ray diffraction) used to characterize the morphology and optical properties of ZnS nanocrystals. Using Effective Mass Approximation (EMA) and Hyperbolic Band Model (HBM), the variation of reduced effective mass of charge carriers in ZnS nanocrystals is analyzed. Experimental data for band gap energies and size of nanocrystals are used for effective mass calculations. There is a blue shift in band gap of ZnS semiconductor nanocrystals with respect to the bulk value. The average size of nanocrystals are compared with the theoretical predictions and in the most cases are in good agreement with the experimental data. It was found that the value of the reduced effective mass of charge carriers in ZnS nanoparticles differs from its bulk crystals and depends on preparation methods of nanocrystals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700