GroEL/ES Buffering and Compensatory Mutations Promote Protein Evolution by Stabilizing Folding Intermediates
详细信息    查看全文
文摘
Maintaining stability is a major constraint in protein evolution because most mutations are destabilizing. Buffering and/or compensatory mechanisms that counteract this progressive destabilization during functional adaptation are pivotal for protein evolution as well as protein engineering. However, the interplay of these two mechanisms during a full evolutionary trajectory has never been explored. Here, we unravel such dynamics during the laboratory evolution of a phosphotriesterase into an arylesterase. A controllable GroEL/ES chaperone co-expression system enabled us to vary the selection environment between buffering and compensatory, which smoothened the trajectory along the fitness landscape to achieve a > 104 increase in arylesterase activity. Biophysical characterization revealed that, in contrast to prevalent models of protein stability and evolution, the variants' soluble cellular expression did not correlate with in vitro stability, and compensatory mutations were linked to a stabilization of folding intermediates. Thus, folding kinetics in the cell are a key feature of protein evolvability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700