Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab
详细信息    查看全文
文摘
Variations in seismic velocity near the subducting slab provide constraints on the thermal structure and the distribution of hydrous minerals and water in a subduction zone. We investigated the seismological structure in the upper mantle beneath Japan using both radial and transverse receiver functions (RFs). Radial RF can image horizontal layers of velocity contrast while transverse RF can image dipping layers. The combination allows us to simultaneously image both horizontal and dipping velocity discontinuities. We investigated the records of 45 teleseismic events observed with tiltmeters at 678 Hi-net stations. The frequency band we used is from 0.02 to 0.16 Hz. The resultant RF image shows an elevated 410 km discontinuity and, more importantly, the top surface of the Pacific slab down to below the 410 km discontinuity. With forward modeling, we determined that the mantle wedge is about 8 % slower in shear-wave speed than the subducting slab at depths deeper than 200 km. The seismic velocity contrast is presumably caused by a sequence of hydrous minerals at the base of the mantle wedge which receives water released by dehydration reactions in the oceanic crust. We employed numerical simulations to determine the distribution of water in and around the subducting slab. The result suggests that hydrous minerals are continuously stable above the subducting slab in relatively cool conditions, and carry water to the mantle transition zone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700