Catalytic NOx removal by single-wall carbon nanotube-supported Rh nanoparticles
详细信息    查看全文
文摘
Single-wall carbon nanotubes functionalized with polyethylene glycol and doped with Rh nanoparticles were prepared and tested as catalyst for NOx reduction. Gravimetric adsorption studies were employed to elucidate the mechanism of NO adsorption on the active surface sites and to determine the onset of the desorption of oxygen. These studies provided information about the reaction kinetics and the lifetime of the catalyst, as well as the NO scission onset temperature and abatement rate, thus making possible to predict the conversion and define the optimum reaction conditions for efficient NO removal. Catalytic experiments were performed under different operating conditions and feed compositions, such as under rich operation, in presence of oxygen, and in presence of reducing CO and hydrocarbons. The developed nanostructured catalyst exhibits enhanced activity at lower temperatures in comparison to that reported for other Rh-based catalytic systems, while data about feed composition effects and carbon support depletion provided operating conditions that suppress N2O formation and extent the catalyst lifetime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700