A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling
详细信息    查看全文
文摘
In this paper, a three-dimensional lattice Boltzmann model is proposed to simulate pool-boiling phenomena at high-density ratios. The present model is able to predict the temperature field inside the bubble. The three-dimensional multiphase model is validated against the analytical solution of evaporation d2law problem and Laplace's law. In addition, effects of different parameters including, Jacob number, gravitational acceleration (g) and surface tension (σ) on bubble departure diameter are presented for further validation. The bubble departure diameter is found to be proportional to g− 0.354 and σ0.5, and has a linear relation with Jacob number. These results are more consistent with previous experimental correlations when compared with available lattice Boltzmann literature. Furthermore, the dynamic behavior of multiple bubble formation sites such as micro convection and vortex ring mechanism are presented to show the capability of presented model for capturing more complex physical phenomena. To sum up, the proposed three-dimensional lattice Boltzmann model is feasible and accurate for numerical simulations of pool boiling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700